-

可編程輸入倍頻法如何減少整數邊界雜散
您曾設計過具有分數頻率合成器的鎖相環(PLL)嗎?這種合成器在整數通道上看起來很棒,但在只稍微偏離這些整數通道的頻率點上雜散就會變得高很多,是吧?如果是這樣的話,您就已經遇到過整數邊界雜散現象了 —— 該現象發生在載波的偏移距離等于到最近整數通道的距離時。
2022-02-08
可編程輸入倍頻法 整數邊界雜散
-

如何仿真轉換器的數字輸入/輸出
對于SAR-ADC的仿真比較復雜。目前來看,還沒有準確模擬整個器件的完整轉換器模型。現有資源是一個仿真模擬輸入引腳穩定性的模擬SPICE文件。有了它,用戶就有了一款強大工具,使用戶能夠解決其中一個最關鍵、最棘手的轉換器問題。
2022-02-08
仿真轉換器 數字輸入/輸出
-

關于相控陣三種波束成型架構的那些事兒~
本文對模擬、數字和混合波束成型架構的能效比進行了比較,并針對接收相控陣開發了這三種架構的功耗的詳細方程模型。該模型清楚說明了各種器件對總功耗的貢獻,以及功耗如何隨陣列的各種參數而變化。對不同陣列架構的功耗/波束帶寬積的比較表明,對于具有大量元件的毫米波相控陣,混合方法具有優勢。
2022-02-08
相控陣 波束成型架構
-

如何充分發揮碳化硅耐高溫的優勢?
隨著碳化硅(SiC)技術的發展,器件也在日趨成熟和商業化,其材料獨特的耐高溫性能正在加速推動結溫從150℃走向175℃,有的公司稱,現在已開始研發200℃結溫的碳化硅器件。
2022-01-28
碳化硅
-

什么是多級放大電路?
一般情況下,單個三極管構成的放大電路的放大倍數是有限的,只有幾十倍,這就很難滿足我們的實際需要,在實際的應用中,一般是使用多級放大電路。
2022-01-27
多級放大電路
-

詳解時域瞬態分析技術
當打開或關閉 LED 時,隨著光線變亮或變暗有一個緩慢的過渡。這種類型的瞬態行為非常簡單,但這是一個電子系統改變狀態時的基本反應。使用瞬態分析可以充分理解時域中的信號轉換,以及它們與重要系統參數的關系。
2022-01-26
時域瞬態
-

主控芯片CPU/FPGA存儲及單粒子翻轉科普
每一次神舟載人飛船和SpaceX衛星的發射升空,都能吸引眾多人關注。對于這些神秘的航天飛信器,你知道它們的信息都是怎么處理的嗎?航天飛行器信息的處理依靠CPU/FPGA,而指令的執行則憑借存儲器。目前市場上大多數售賣主芯片的廠商都是靠存儲器起家的。
2022-01-25
主控芯片 CPU/FPGA存儲 單粒子
-

談峰值電流控制模式下的次諧波振蕩
相信各位工程師朋友們都遇到過電源不穩定的現象,這種現象有可能是原理圖或者PCB設計不當導致的,也有可能是環路補償不夠的因素;而由于次諧波振蕩導致的電源不穩定現象,大家了解多少?
2022-01-25
峰值電流 次諧波振蕩
-

選擇正確的設備監測電池溫度
在當今信息時代,幾乎所有的便攜式電子產品都采用電池供電。 電池還可以充當大型場所的備用應急電源。 此外,純電動汽車也在使用大型串、并聯電池包,來提供充足的功率,滿足性能要求。
2022-01-24
設備監測電池溫度
- 噪聲中提取真值!瑞盟科技推出MSA2240電流檢測芯片賦能多元高端測量場景
- 10MHz高頻運行!氮矽科技發布集成驅動GaN芯片,助力電源能效再攀新高
- 失真度僅0.002%!力芯微推出超低內阻、超低失真4PST模擬開關
- 一“芯”雙電!圣邦微電子發布雙輸出電源芯片,簡化AFE與音頻設計
- 一機適配萬端:金升陽推出1200W可編程電源,賦能高端裝備制造
- 4200VAC耐壓測試頻頻失效?警惕串聯隔離的電壓堆疊陷阱
- 光耦電路在開關電源中的選型與設計策略
- 更安全、更舒適、更貼心!華為乾崑智駕ADS V4.1助力嵐圖開啟智能出行新篇章
- 你以為電梯只是鐵盒子?其實是“法拉第籠”在屏蔽你的信號!
- 手機為啥越來越薄?這項“藏元件”工藝功不可沒
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall





